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Abstract-Planar solidification in a slab of finite thickness is numerically simulated. The solid density is 
assumed to be lower than the liquid density and the phase change material expands while freezing (e.g. 
water). The effects of an opposing elastic force, due to the interaction with the container, are analysed. The 
increasing pressure determines a continuous lowering of the melting temperature ; as a result the interface 
motion and the temperature field are strongly affected. The time square-root dependence of the melting 

front position fails down and is replaced by an asymptotic behaviour. 

1. INTRODUCTION 

The solution of Stefan problems describing sol- 
idification or melting of a phase change material 
(PCM) attracted considerable interest, due to the 
difficulties associated with the intrinsic non-linearity 
of the interface conditions and the unknown location 
of the melting front. Exact solutions are limited in 
number. Those found up to 1990 are discussed in ref. 
[I]. Several approximate methods have been 
developed and widely used, including quasi-steady 
methods, the heat balance integral concept [2], and 
variational methods [3]. Numerical solutions have 
been obtained, based on both fixed [4,5] and variable 
[6, 71 grid methods. 

Few solutions take into account the mechanical 
effects inherent in the phase change processes. Such 
effects may be due to the different density of the solid 
and the liquid phases : the PCM contracts or expands 
during the change of phase and convective terms arise 
in the heat equation. Analytical [8, 91 and numerical 
[lo, 1 I] studies on this subject are mainly concerned 
with the kinematic effects of the volume change. How- 
ever, melting or freezing of a PCM often takes place 
in a limited volume, bounded by the container walls. 
In this case, when the emerging phase is the one with 
lower density, the pressure exerted on the PCM 
increases and the melting temperature is affected 
according to the Clapeyron equation ; the change of 
phase continues until either the breakdown of the 
container walls occurs, or the PCM reaches thermal 
equilibrium with the environment. No attempts have 
been made to address such a problem, that is of central 
relevance in geological processes as well as in many 
areas of engineering applications. Sliding of glaciers, 
for instance, is mainly driven by melting under high 
pressure conditions [12]. In soil physics, mechanical 
restrictions on the freezing of water are often en- 
countered ; as a result, ice can rarely form inside a soil 
mass at 0°C [ 131. In the engineering of thermal storage 

severe mechanical conditions can arise when the melt- 
ing PCM is surrounded by the solid phase. and hence 
is hindered to expand [14]. 

In the present paper, the one-dimensional sol- 
idification of a finite slab is numerically analysed. The 
PCM is assumed to expand while freezing. As shown 
in Fig. 1 the process is contrasted by a force that 
simulates, according to Hooke’s law, the elastic behav- 
iour of the container wall. Due to the increasing pres- 
sure a continuous lowering of the melting temperature 
occurs ; the heat flux is reduced and the melting front 
advancement is slowed down. 

The convective term in the heat equation, due to 
the expansion of the PCM, leads to a correction in the 
interface motion given by the product of the relative 
density change and the Stefan number [ 151. Usually, 
both these parameters are rather small and the cor- 
rection is quite small too. Hence, the pure diffusion 
equation has been utilised to treat the heat transfer 
inside the PCM. No pressure dependence of the PCM 
latent heat is assumed ; equal values of the effective 
compressibility are assumed for the two phases. 

The problem has been formulated through the weak 
solution approach usually referred to as the enthalpy 
method; the resulting equation has been solved 
numerically by the finite difference method. 

The results that will be presented show that the 
interface motion is strongly affected by the pressure 
increase ; the time square-root dependence of the melt- 
ing front position fails down, and is replaced by an 
asymptotic behaviour. 

2. FORMULATION OF THE PROBLEM 

The system is illustrated in Fig. 1, where the emerg- 
ing solid phase is represented by the shaded area and a 
spring simulates the elastic behaviour of the opposing 
container wall. Figure 2 shows, in a pressure-volume 
diagram, the thermodynamic path followed by the 
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thermal diffusivity C 
specific heat capacity 
Young modulus of  the elastic opposing V 
wall V0 
non-dimensional parameter,  defined x 
as: F = (1 /2) (1 /p , -  1/p.) xr 
(1 -ps /p~)E/ (qE+ 1) 
non-dimensional parameter,  defined 

as : G = Tmo/ ( Tmo - T~) q 
thermal conductivity 2 
length of  the P C M  slab 
initial length of  the PCM slab 
pressure ~f 
initial pressure of  the P C M  
Stefan number, defined as : p 
St = cs(Tm o -  T~)/2 a 
temperature z 
initial temperature of  the PCM 
actual melting temperature of  the X 
P C M  
initial melting temperature of  the 
PCM 
PCM temperature at x = 0 
dimensionless temperature, defined as : 

= (T- -  Tmo)/(Tmo- T~) 
time 
internal energy per unit volume 

dimensionless internal energy, defined 

as: C = (U-p,,c,,Tmo)/(p,2) 
volume of  the PCM 
initial volume of  the PCM 
coordinate direction 
coordinate of  the melting front. 

Greek symbols 
effective compressibility of  the PCM 
PCM latent heat 
dimensionless coordinate direction, 
defined as : ~ = x/Lo 
dimensionless coordinate of  the 
melting front 
density 
liquid fraction of  the PCM 
dimensionless time, defined as : 
z = aJ/L~ 
non-dimensional variable, defined as : 

X = ko/k~. 

Subscripts 
f melting front 
l liquid phase of  the PCM 
p PCM 
s solid phase of  the P C M  
0 initial conditions. 

P C M  ; curves of  constant liquid fraction of  the P C M  
are labeled as a~, a2, a3. Let Lo, Vo be the initial length 
and volume of  the PCM slab. For  times t ~< 0 the 
PCM is in the liquid phase at a uniform temperature 
T(x, O) = To > Tmo, where Tmo is the melting tem- 
perature at the initial pressure Po. At time t = 0 the 
temperature of  the surface x = 0 is suddenly lowered 
and maintained at T(O, t) = T~ < Tmo. Adiabatic wall 
at x = Lo is assumed. A solid layer grows adjacent to 

Elastic wall 
J 

solid phase I I liquid phase 
I 

I I 
0 xf L 

) 
X 

Fig. 1. Schematic diagram of the slab and the opposing elastic 
wall. The shaded area represents the emerging solid phase; 
the spring simulates the elastic behaviour of the opposing 

wall at x = L. 

the surface x = 0 and advances with time. The volume 
increase of  the PCM, due to the lower density of  the 
solid phase, is allowed in the x direction only, i.e. 
perfectly rigid lateral walls are assumed. The opposing 
wall causes a pressure increase on the PCM given, in 
the elastic limit, by : 

P - P o  = E ( V -  Vo) (1) 
vo 

where p, V indicate the actual pressure and volume of 

p (arbitrary units) 

). 
V (arbitrary units) 

Fig. 2. The thermodynamic path along the straight line aa' 
followed by the PCM in the pressure volume plane. Curves 

of constant PCM liquid fraction are labeled as a~, a2, a3. 
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the PCM and E is the Young's  modulus of the elastic 
wall. Equat ion (1) is represented, in Fig. 2, by the 
straight line aa'. The PCM volume is determined by 
solving equation (1) in conjunction with : 

1 (v-v') 
p - p 0  (2) 

q V' 

Equation (2) describes the compression of the PCM 
and is represented by the curves labelled as a ; t/is the 
effective compressibility of the two-phase mixture;  
and V' is the volume that would be occupied by the 
PCM in absence of opposing forces. It is easy to show 
that : 

PlJ LoJ 

When ( l - (p~/pt)) is small, as is usually the case, equa- 
tions (2) and (3) give: 

P - P 0  = ~  I-- (4) 
pl J Lo" 

Equation (4) shows that the pressure of the system 
increases as the solidification goes on ;  as a conse- 
quence the melting temperature changes according to 
the Clapeyron equation : 

dp 
(5) 

dTm Tm(pf I - p ~ - ' )  

If the PCM latent heat is not  affected by the pressure 
variation, equation (5) can be easily integrated to 
give : 

(p~ 1 _ PF I) 
T~ = Tin0" exp 2 (P-P0)-  (6) 

In the following it will be assumed that : 

• the heat transfer is only due to conduction, i.e. the 
kinematic effects of the phase change are neglected ; 

• the energy interaction due to mechanical work is 
neglected too. 

It means that density variations during the process are 
ignored except insofar as they give rise to a pressure 
increase. 

Under  these assumptions, the one-dimensional heat 
equation can be written as 

~U ¢3 OT 
c~t - Ox kp 63 x . (7) 

U in equation (7) indicates the energy stored per unit  
volume, and is related to the temperature via : 

T = ccU+fl, (8) 

where : 

= (p~c~) ' f l = O  {U(p~c~Tm} ,  

{ U-pscsTm } 
o~ = 0 fl = T m O ~ pl,~ < . 1 ,  

~ = (p~c~) -1 f l = T m ( 1 - P ~ C ~ ]  2 
plcl ] c] 

p~2 > 

The initial and boundary  conditions for equation ( 7 )  

are specified by : 

T( x , O) =  T O T(O, t )=  T~ c ~  = 0 .  
Lo 

The problem can be conveniently restated in terms of 
the following non-dimensional  variables: 

= x/Lo z = a~t/L~ T =  ( T -  Tmo)/(T~ o -  T~) 

Z = kp/k~ St = c~(Tm0 - "1",)/2 

0 : (U-p~c~Tmo)/(p,).) 

F =  - - ~  p , J t l E + l  • G Tmo-T~" 

The non-dimensional  melting temperature is given by : 

"Fro = G(e F¢,__ 1). (9) 

The dimensionless energy equation can be written as 
follows : 

st  p~ a~ - ~ '  (10)  

with the initial and boundary  conditions specified as 
follows : 

~(~, 0) = T0 ~ ( 0 ,  ~) = - l ~ ~ ~, = 0. 

The non-dimensional  energy is related to the tem- 
perature via : 

T=&O÷# (ll) 

where : 

c, ~ /~= L l -  p,c,/ c, st 

It can be observed that the temperature field inside 
the PCM depends on 4, z, St, F, G, PL/ P~, Z, c~/ c~, To. 

3. THE NUMERICAL PROCEDURE 

The energy equation has been approximated with 
the control-volume finite-difference approach sug- 
gested by Patankar  [16]. The resulting algebraic equa- 
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tions have been solved by the tridiagonal matrix 
algorithm. 

The solid-liquid interface, needed to determine the 
actual melting temperature through equation (9), is 
identified at the discontinuity of the energy per unit 
volume field. During the process the PCM melting 
temperature is updated by using the following pro- 
cedure : at each time step the problem is solved with 
the 'old'  melting temperature, then the freezing front 
is identified. The new melting temperature is evaluated 
and the problem is solved again. The procedure is 
repeated until  convergence is attained. The converged 
results are assumed to be reached when the maximum 
relative change of the variables between consecutive 
iterations is less than 0.01%. This is a simple way 
to track with a trial and error technique the actual 
thermodynamic path followed by the PCM. 

The consistency of the computat ional  scheme has 
been checked by performing an overall energy balance 
at each time step: energy conservation was verified 
within 0.01% of the total heat removed from the 
PCM. However, the enthalpy method applied to phase 
change problems can result in unaccurate temperature 
history and distribution inside the PCM, and careful 
attention must be paid in choosing the grid spacing 
as well as the time step. The check on the energy 
conservation is not  effective to stress these difficulties, 
because it is basically tautologic in respect to the 
primitive equation. The entropy equation provides an 
alternative and independent way to verify the accuracy 
of the temperature field [17]. The entropy balance 
has been performed at each time step ; the numerical 
source of entropy never exceeded 0.5 % of the entropy 
generated inside the PCM. 

4. RESULTS 

The lack of experimental data makes it difficult to 
validate the present model. However, for low values 
of the Stefan number,  the numerical solution can be 
tested against a quasi-steady approximation. When 
linear temperature profiles are assumed in the solid 
and liquid phases, and as long as the PCM tem- 
perature at x = L0 is tied to T0, the heat balance at 
the interface is : 

dt - ps2 [Tm (x 0 -  T~]-  [To - Tm(x0] , 

(12) 

where the actual melting temperature is related to the 
melting front position through equation (6). 

In terms of the non-dimensional  variables, and 
when F i s  small, the heat balance becomes, after some 
manipulat ions : 

d37 
~r(l - ~f) 

d~r. 
St  F G ( I  - k , / k , ) ¢  2 - -  S t (1  + F G  + ~ 'ok l /ks)~f  pc. S t  

(13) 
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Fig. 3. The melting front position vs the non-dimensional 
time. Curve a represents the quasi-steady solution, curve b 
the present numerical solution. S t=0.01;  F=0.003:  

G = 101; 7"0 = 0. 

Equation (13) can easily be integrated to give the 
advancement of the melting front ; when k~/k~ = 1 the 
solution is : 

~f St 

(14) 

with B = - S t ( l  + F G +  i~0). 
Figure 3 shows the melting front position vs r, with 

F = 3 x 10 --3, St = 10-2 ; curve a refers to the quasi- 
steady solution and curve b to the numerical solution. 
It can be observed that the agreement is quite sat- 
isfactory at low z values; when r becomes large the 
PCM temperature at x = L0 is driven towards T~ and 
the quasi-steady model fails down. 

On the side of large z values, the asymptotic melting 
front position can be derived through equation (9) : it 
results, when thermal equilibrium is attained, in : 

1 G 
~f = ~,ln G - I  " (15) 

Figure 4 shows the asymptotic melting front position 

~f 
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0 

Pl/Ps =1.0905 

~/ks=l 

= i = i 

0 0.02 0.04 0.06 0.08 

Fig. 4. The asymptotic melting front position vs F: the solid 
curve is drawn through equation (15), the dots refer to the 

numerical solution. St = 0.01 ; G = 101 ; T, = 0. 
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Fig. 5. The melting front position vs the non-dimensional 
time for different values of the Stefan number. F = 0.1 ; 
G = 17.7; 7~0 = 0. Curve a: St = 0.05; curve b: St = 0.1; 

curve c : St  = 0.5. 
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Fig. 8. The melting front position vs the non-dimensional 
time for different values of the initial PCM temperature. 
S t = 0 . 1 ;  F = 0 . 1 ;  G =  17.7. Curve a: 7~= 0; curve b: 

7~0 = 1 ; curve c : 7~0 = 2. 
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Fig. 6. The melting front position vs the non-dimensional 
time for different values of F. St  = 0.1 ; G = 17.7; /~c~ = 0. 

Curve a: F =  0.01 ; curve b: F =  0.1 ;curve c: F =  0.3. 

vs F:  the solid curve is drawn through equation (15), 
the dots refer to the numerical solution. As it can be 
observed, the agreement is excellent. 

Now we are going to see how the melting front 
advancement is affected by variations of  S t ,  F,  G, To. 

The remaining non-dimensional parameters have 

been chosen with reference to the thermophysical 
properties of  water. 

The effect of  the Stefan number is represented in 
Fig. 5. Here ~?0 = 0, F = 0.1 and G = 17.17. The melt- 
ing front saturates at ( f=  0.6. The curves show how 
faster thermal equilibrium is attained as the Stefan 
number increases. 

Figure 6 shows the influence of  F, i.e. of  the mech- 
anical constriction on the PCM. At F = 0.01 thermal 
equilibrium is attained when all the PCM is solidified. 
As F increases the velocity of  the melting front is 
reduced and the liquid fraction of  the PCM at thermal 
equilibrium increases, as indicated by equation (15). 

A similar role is played by G, as shown in Fig. 7; 
equation (9) indeed indicates that for low F values 
F and G affect the solution merely through their 
product. 

Figure 8 shows the effect of  the initial overheating 
of  the PCM. The curves indicate that as ]?0 increases 
the adverse temperature gradient reduces the melting 
front velocity, but does not  affect the saturation value 
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Fig. 7. The melting front position vs the non-dimensional 
time for different values of G. St  = O. 1 ; F = O. 1 ; "~o = O. 

C u r v e a : G =  1 0 ; c u r v e b : G = 2 0 ; c u r v e c : G = 3 0 .  

5. CONCLUSIONS 

In this paper we analysed the planar solidification 
in a slab of  finite thickness ; attention has been focused 
on the effects of  the pressure increase due to the den- 
sity change in the phase transition. The problem is of  
great interest in geological processes as well as in many 
areas of  engineering applications and, to the author 's  
knowledge, has never been addressed in the literature. 

The results show the influence of  some parameters 
on the melting front advancement and on the thermal 
equilibrium end state. 
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